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Executive Summary 

This report presents calculated baseline screening levels (BSLs) for evaluating potential 
groundwater impacts from the Colstrip Steam Electric Power Station (SES) located in Colstrip, 
Montana (the Facility). BSLs cover the Plant Site area (Plant Site), the Units 1&2 Stage I and II 
Evaporation Pond (SOEP and STEP) areas, and the Units 3&4 Effluent Holding Pond areas. 
Arcadis (2007) previously calculated BSLs for the Plant Site and Units 1&2 SOEP and STEP 
areas. Exponent previously calculated draft BSLs for the Units 3&4 Effluent Holding Pond 
(Exponent, April 18, 2011). Since that time considerably more data have been collected by 
various parties within the vicinity of the SES. Subsequent to approval of the BSLs Work Plan 
(Neptune and Company, Inc. 2015), data have been added to the available database, statistical 
evaluations have been performed, and revised BSLs have been calculated. The following 
objectives were achieved during the course of the data evaluation and BSL development: 

1) Confirmed and updated the unimpacted status of wells (relative to SES closed loop 
wastewater operations) and groundwater samples from those wells used in previous 
developments of groundwater BSLs. 

2) Identified additional wells that provide background data that were not previously 
included and evaluated them for inclusion in the groundwater background database. 

3) Determined that the list of analytes with BSLs can be expanded based on the updated 
groundwater data. 

4) Determined if BSLs are appropriate for site-wide use  
5) Grouped stratigraphic units as possible, and practical, for BSLs calculation 
6) Compiled and evaluated surface water data for exploratory data analysis and subsequent 

BSL calculation. 
7) Updated statistical methodologies used in previous BSL calculation. 
8) Presented updated BSLs. 

Note that the BSLs Work Plan (Neptune 2015) offered some options for exploratory data 
analysis and methods for BSL calculations depending on the statistic of interest. Some 
clarification was provided after the BSLs Work Plan was approved; that is, the preferred BSLs 
were defined in consultation with the MDEQ as the 95th upper confidence bound on the 90th 
percentile of the baseline data. This statistic is often termed an upper tolerance limit (UTL), 
which, in this case can be written as a 95/90 UTL.  

It was also noted in the BSLs Work Plan that the data would ultimately determine the statistical 
methods used for BSL calculations. Some options were offered in the BSLs Work Plan, but with 
the expectation that the data would drive the approach. In particular, it was noted that recent 
regulatory guidance would be followed, but that these methods would be augmented as necessary 
depending on the specifics of the available data. Various methods were considered, including 
some not described in the BSLs Work Plan, and, in consultation with the MDEQ, methods were 
agreed upon that are presented in this report. The sheer magnitude of the data led to 
consideration of some innovative methods for identifying background data, and data challenges 
(e.g., many non-detects, few data points) also led to using statistical methods that are fairly 
robust to such challenges. 
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For the large groundwater dataset, a Random Forests clustering approach is utilized to determine 
a baseline dataset from which BSLs can be estimated. BSLs are calculated for five different 
stratigraphic layers (Alluvium, Spoils, Clinker, Coal-Related, and SubMcKay). 

For the smaller surface water dataset, the background data selected are those from four locations 
upstream of Colstrip, where the locations are chosen by subject matter experts, and choices are 
made based on sample location conditions, the number of sampling events, and the restriction 
that locations must be upstream from the Colstrip facility. 

A bootstrapping method coupled with a Gehan-based ranking system to account for multiple 
detection limits within the non-detect data was used to estimate the background screening levels. 
This approach requires no assumptions about the distribution of the data.  

Updated background screening levels are reported in Tables 7 and 9 for groundwater and surface 
water, respectively. 
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1.0 Introduction 

Hydrometrics, Inc. (Hydrometrics), on behalf of Talen Montana, LLC (Talen; Formerly PPL 
Montana, LLC (PPLM)), retained Neptune and Company, Inc. (Neptune) to produce updated 
Background Screening Levels (BSL) for the Colstrip Steam Electric Power Station (SES) located 
in Colstrip, Montana (the Facility). The updated BSLs cover the Plant Site area (Plant Site), the 
Units 1&2 Stage I Evaporation Pond (SOEP), Stage II Evaporation Pond (STEP) area (1&2 
Area), and Units 3&4 Evaporation Holding Pond (3&4 EHP) area.  
 
On August 3, 2012, PPLM and the Montana Department of Environmental Quality (MDEQ) 
entered into an Administrative Order on Consent (AOC) Regarding Impacts Related to 
Wastewater Facilities Comprising the Closed-Loop System at the Colstrip SES (MDEQ/PPLM 
Montana, 2012).  
 
As defined by the AOC, cleanup criteria for the constituents of interest (COIs) will be 
determined as follows (emphasis added):  

“For each COI in ground or surface water, except for the evaluation for ecological 
receptors, the applicable standard contained in the most current version of 
Circular DEQ-7 Montana Numeric Water Quality Standards (“DEQ-7”), the 
USEPA maximum contaminant level, the risk-based screening level contained in 
the most current version of Montana Risk-Based Guidance for Petroleum 
Releases, whichever is more stringent; and, for COIs for which there is not a 
DEQ-7 standard, a maximum contaminant level, or a risk-based screening level 
contained in the Montana Risk-Based Guidance for Petroleum Releases, the tap 
water screening level contained in the most current version of USEPA Regional 
Screening Levels for Chemical Constituents at Superfund Sites, except that no 
criterion may be more stringent than the background or unaffected reference 
areas concentrations; and 
 
For each COI in ground or surface water that may impact an ecological receptor, an 
acceptable ecological risk determined using the most current versions of standard USEPA 
ecological risk assessment guidance if the criteria set pursuant to (1) above are not 
adequate to protect ecological receptors, except that no criterion may be more 
stringent than the background or unaffected reference areas concentrations”. 

BSLs for groundwater have previously been established (Exponent 2011, Arcadis 2007, Maxim 
2004). In the current work, Neptune presents updated BSLs for groundwater and surface water 
for the Colstrip SES. This Updated BSL Report is a companion to the Cleanup Criteria and Risk 
Assessment Work Plan (CCRAWP) currently being updated by FordCanty & Associates, Inc. 
(FordCanty) and Neptune based on initial comments from the MDEQ. As such, the results of the 
BSL statistical analyses presented here will be used to support the human health and ecological 
risk assessments. 
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1.1 Facility Description 

A description of the Colstrip SES, hereafter called the Facility, is provided because BSLs need to 
be responsive to potential sources of contamination and to the different geologic and hydrologic 
conditions at the site. In particular, different groundwater datasets are developed for different 
stratigraphic layers. The transport mechanisms and the flow direction of groundwater between 
these layers can affect the background concentrations between some of these layers. In addition 
to environmental conditions, it is also important to understand the effect of existing groundwater 
capture systems. These have a significant influence on the flow of groundwater on and near the 
site, and limit flow directly downgradient of the capture systems.  
 
The Facility consists of four power-generating units (Figure 1). Units 1 and 2 are 333 megawatts 
each and began operation in the mid-1970s. Units 3 and 4 are 805 megawatts each and began 
operation in 1984 and 1986, respectively. Talen is the operator of the Facility, which is co-owned 
by Talen, PacifiCorp, Puget Sound Energy, Inc., Portland General Electric Company, Avista 
Corporation, and NorthWestern Corporation (Hydrometrics 2015). 
 
The Facility generates electricity through the combustion of coal. Fly ash, a by-product of coal 
combustion, is removed by air scrubber systems to reduce emissions. Bottom ash collects at the 
bottom of the boiler. Fly ash, bottom ash, and Facility wastewaters contain constituents of the 
original coal. A closed-loop process water/scrubber system is used at the Facility to minimize 
impacts to water resources in the area (the Facility is zero discharge). Ash- and water-based 
liquid wastes from the generating plants are impounded in ponds designed and constructed to 
control seepage losses. The Plant Site pond system includes ponds that serve all four generating 
units in various capacities. Fly ash disposal is not currently conducted on the Plant Site, but 
rather in holding ponds to the northwest of the Plant Site at the 1&2 Area and to the east of the 
Plant Site at Units 3&4 Effluent Holding Pond. Fly ash deposited during previous operations 
remains in the closed Plant Site Units 1&2 Pond A. 
 
The Facility is located near the city of Colstrip, which lies within Rosebud County in the south 
central area of the state of Montana. Colstrip was established in the early 1920’s to provide coal 
for Northern Pacific Railways locomotives. Mining ceased in the area in the late 1950’s as diesel 
fuel replace coal as a fuel source for the locomotives. Mining resumed in the early 1970’s to 
provide coal for the Colstrip Steam Electric Station, and other facilities. Coal mining, ranching, 
urbanization, and electrical generation are the primary land uses in the immediate Colstrip area. 

Coal mining in the Colstrip area is accomplished by strip mining. This involves removal of the 
strata that overlies the coal, referred to as overburden. The overburden is blasted with explosives 
to make removal of the rock possible with the use of mining equipment. The coal is then 
typically blasted prior to removal. Following removal of the coal, the overburden from the next 
cut, is removed and placed in the pit. This material is referred to as spoil.   

1.1.1 Geology 

Stratigraphy in the Colstrip area consists of, from the surface downward, the Fort Union 
Formation, Hell Creek/Lance Formation, Fox Hills Sandstone, and Bearpaw Shale. The Fort 
Union Formation is divided into three members; the upper Tongue River Member, the middle 
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Lebo Shale Member, and the lower Tullock Member. The Tongue River Member is at the 
surface in the Colstrip area. The deeper Lebo Shale, and then the Tullock Members are exposed 
to the north. At Colstrip, the total thickness of the Fort Union Formation is about 650 feet. Figure 
1 is a cross section that illustrates the geology in the Units 1&2 Stage I & II Evaporation Ponds 
area. 

The Fort Union Formation consists of alternating and intercalated deposits of shale, claystone, 
mudstone, siltstone, sandstone, carbonaceous shale and coal. The formation was deposited in a 
fluvial system of meandering, braided, and anastomosed streams near the basin center and by 
alluvial fans at the margins. The fluvial systems were typically oriented northeast-southwest. 
(Flores and Ethridge 1985 as cited in Hydrometrics 2015). 
 
Numerous coal seams are present in the Tongue River Member of the Fort Union Formation, the 
result of peat deposits that accumulated in swampy areas and channels. The main coal seams of 
interest near Colstrip are the sub-bituminous Rosebud (~ 24 feet thick) and McKay seams (~ 8-
10 feet thick). The Rosebud Coal, however, is the only seam mined in the Facility area due to 
quality of the McKay Seam which makes it undesirable for use in many coal-fired boilers. Both 
the Rosebud and McKay coals contain natural vertical fracturing (cleats) generally oriented 
perpendicular to the bedding plane. Bedrock beneath the McKay coal stratigraphy is referred to 
as sub-McKay.  

The Rosebud Coal, and in some places the McKay Coal has undergone in situ burning in the 
Colstrip area. Burned areas can be identified by red cap rock on hills around the region. Burning 
of the coal baked the overlying strata. As a result of the burning, the coal volume was reduced 
leaving a void for the overlying rock to collapse into, or slowly settle into over time. The 
thermally altered rock is referred to as clinker or scoria. Collapse of the rock resulted in 
secondary porosity (fractures). Permeability varies but is typically very high and depends on the 
amount of fine-grained sediments that has moved vertically into the available pore spaces and the 
degree and nature of fracturing. No clinker has been confirmed on the Plant Site proper but it 
does occur at the SOEP/STEP (Figures 2 and 3) and Units 3&4 Effluent Holding Pond areas. 
 
Alluvium is present in the drainage bottoms. Figure 2 includes two cross sections illustrating the 
shallow geology along the Creek. The ancestral East Fork Armells Creek eroded through the 
shallow bedrock, including the Rosebud and McKay Coals, and in some places into the sub-
McKay deposits (Figure 3). 

1.1.2 Hydrology and Hydrogeology 

Groundwater is found in multiple layers of stratum in the area. These include, in a general 
descending order: 

• Fill – Typically earthen material that is used to fill depressions, backfill excavations or 
build up areas to create mounds or change the grade or elevation of the ground. Examples 
of fill are spoil placed back into a mine pit or standing on the edge of a pit, soil or 
aggregate placed in excavated areas, and fill placed to level roadways or parking lots, etc. 
Any disturbed soil that has been reworked, placed in another location, or disturbed and 
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contoured would also be considered fill. In most cases, fill is above the groundwater 
table. However, in some instances, such as spoil, groundwater is present in the fill.  

o Spoil – Silt, clay, sandstone, coal fragments, formerly overburden units that have 
been used to backfill areas where the Rosebud Coal was mined. The spoil were 
formed as a result of strip mining of the Rosebud Coal seam. Strip mining 
involves removing overburden material (sedimentary rocks that overlie the coal) 
and placing it in the previously mined pit. The coal is then removed. The removed 
overburden is referred to as spoil. Groundwater flow directions in spoil are 
typically consistent with the area topography, or the orientation of the bottom of 
the pit until regional flow is re-established. 

• Alluvium – Poorly sorted clay, silt, sand and gravel deposited by fluvial processes in 
drainage bottoms. The most significant alluvial deposits occur under East Fork Armells 
Creek, Cow Creek, South Fork Cow Creek, Stocker Creek, and Pony Creek.  
Groundwater flows down the drainages under gradients that are typically similar to the 
topography. Minor alluvial deposits are also present in tributaries. A basal gravel, 
comprised of clinker, is often present in the alluvium. Clinker fragments are typically 
also found throughout finer-grained alluvial deposits. Alluvium is usually saturated 
within a few feet of ground surface in the East Fork Armells Creek vicinity but may be 
unsaturated for all or part of the year in its tributaries and the upper reaches of the Cow 
Creek basins. 

• Colluvium – Colluvium is slope deposits, which have been transported downslope by 
fluvial or gravitational means. Colluvium in the Colstrip area is most often a silty clay or 
clayey silt composition, although coarser deposits may be present locally. Colluvium is 
frequently inter-fingered with the alluvial deposits along the edge of floodplains. 
Groundwater is typically not present or is only present in small amounts in the colluvium.  

• Rosebud Overburden – Bedrock units of the Fort Union Formation comprised of 
siltstone, claystone, shales, and fine-grained sandstone typically overlay Rosebud Coal.  
Groundwater is often present in the overburden units in the Plant Site Area and south of 
the Stage I Evaporation Pond area. Flow typically is in a direction similar to topography 
where groundwater is present. 

• Rosebud Coal – Cleated coal with thickness on the order of 20 to 25 feet. This coal seam 
has been mined throughout much of the eastern portion of the Plant Site, south and 
southwest of the Stage I & II Evaporation Ponds, and west of the Units 3&4 Effluent 
Holding Pond. 
Groundwater levels (if present) in the Rosebud Coal drop as mining approaches, or pre-
mining dewatering is conducted. Recharge of spoil groundwater begins once the pit is 
backfilled. Recharge is either laterally from adjacent coal (if the coal is wet), drainage 
into the spoil from adjoining overburden (if water is present), from infiltration of 
precipitation, or a combination. Additional information regarding groundwater flow can 
be obtained through review of recent annual hydrologic monitoring reports 
(Hydrometrics, 2015a), and in site specific AOC reports (Hydrometrics, 2013a, 2013b, 
2015b). A detailed explanation of Colstrip, Montana Coal mining can be found in 
(Roberts et al, 1999).Groundwater flow in the coal is described in numerous permit 
documents for the Big Sky and Rosebud Mines. 
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o Clinker – Also referred to as scoria and baked shale – Comprised of thermally 
altered and collapsed overburden (sandstone, siltstone, shale, etc.) formed by the 
burning of previously underlying coal. Clinker is generally quite permeable, a 
function of the secondary porosity caused by fracturing. Natural groundwater is 
typically not present in any of the three areas due to the high permeability that 
results. 

• Rosebud-McKay Interburden. Typically consisting of siltstone and shale although 
isolated sandstone deposits may also be present. The thickness of the interburden, and the 
presence of groundwater varies throughout the area. The thickness typically ranges from 
less than one foot to more than 10 feet. Groundwater in the interburden generally flows in 
a direction similar to the Rosebud Coal.  

• McKay Coal– Cleated coal with a thickness of 7 to 14 feet, but most often 8 to 9 feet.  
The McKay Coal is a widespread hydrostratigraphic unit in the Colstrip area as it is often 
saturated with groundwater. The McKay is absent, however, in areas along the western 
margin of the Plant site where it has been eroded, under much of the Stage I & II 
Evaporation Ponds, and in lower elevations in the Units 3&4 Effluent Holding Pond.  

• Sub-McKay – Fort Union Strata consisting of interbedded claystone, siltstone, fine-
sandstones, and thin coal seams. Channel sands are not uncommon. Multiple intervals of 
water bearing sandstone and siltstone are present. The shallower sub-McKay sandstone 
(first water under McKay Coal) is typically targeted for water supply wells. However, 
deeper intervals are also targeted in some areas where the shallower sands are dry or only 
contain limited amounts of groundwater or the shallower units have been removed by 
erosion. Channel sands are not uncommon.  Sub-McKay sandstones are used for water 
supply aquifers in the Colstrip area. Yields from wells completed in sub-McKay 
sandstones in the Colstrip area vary from less than one gpm to more than 20 gpm. 

Shallow groundwater flow directions are locally changed by the operation of current capture 
systems. For example, under non-pumping conditions at both the Plant Site and the 1&2 Area, 
shallow groundwater flow is generally expected to mirror the topography with flow towards the 
Creek and discharge into the alluvium along the Creek where the shallow bedrock units have 
been eroded by the ancestral East Fork Armells Creek. Under pumping conditions, overall 
shallow groundwater flow is locally diverted and interrupted by the capture systems (Figures 4 
and 5). Groundwater flow is affected in a similar manner in the SOEP, STEP, and Units 3&4 
Effluent Holding Pond areas. 

Deep groundwater in the sub-McKay units generally flows to the northeast under a regional 
gradient toward the Yellowstone River. 

Lateral variations in groundwater flow conditions might exist near mine spoil. If the hydraulic 
conductivity of the spoil is higher than the adjacent deposits, the spoil will act as a 
drain. Conversely, if the spoil hydraulic conductivity is lower, an impediment to flow will occur. 
Spoils are present in the eastern portion of the Plant Site. In general, permeability of the spoil is 
similar to the adjacent bedrock. However, spoil with a higher permeability is present north and 
west of the Units 3&4 Bottom Ash Ponds. This results in the high yield (~50 gallons per minute 
[gpm]) of the Western Energy Company (WECO) well. The WECO well was installed to lower 
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the groundwater level below a coal crusher at the Rosebud Mine. The well was advanced to the 
base of the mine spoil (60 feet below ground surface [bgs]) and five feet into the underlying 
interburden (bedrock) to a depth of 65 feet. Spoil occurs west and southwest of the Units 3&4 
Effluent Holding Pond but does not affect groundwater flow in the vicinity of the pond. Some 
active, or open, coal mine pits are also present. These pits act as groundwater drains when they 
intersect the water table. 

Several indicator parameters are used to evaluate potential process wastewater impacts to 
groundwater at the Facility. These include specific conductance (SC), sulfate, dissolved boron, 
chloride, and the ratio of calcium to magnesium.  

Existing groundwater capture systems in the areas where the highest concentrations of indicator 
parameters have been observed (both in the shallow units and in the McKay Coal) limit 
migration of impacted groundwater away from the Facility. At the Plant Site, capture wells are 
located downgradient of the Units 1&2 A Pond, Units 1&2 B Pond, Units 1&2 Bottom Ash 
Ponds, Units 1-4 Sediment Retention Pond, North Cooling Tower Blowdown Pond C, and South 
Cooling Tower Blowdown Pond C. Additional capture wells are located at the former Brine 
Ponds, Unit 3&4 Drain Collection Pond, and Units 3&4 Bottom Ash Ponds. Consequently, the 
Plant Site capture wells are located between the various ponds and East Fork Armells Creek. 
There is a small area with groundwater flow from the Plant Site toward the Cow Creek drainage 
basin near the Units 3&4 Bottom Ash Ponds. In the 1&2 Area, capture wells are located 
downgradient of the STEP dam between the dam and East Fork Armells Creek. In both locations 
the capture wells are designed to capture shallow groundwater prior to it reaching the creek. 
Groundwater capture is being conducted in the Units 3&4 Effluent Holding Pond in the alluvium 
downgradient from the Main Dam, the Saddle Dam, and in South Fork Cow Creek. Groundwater 
recovery is being conducted in the clinker along the south and southwest sides of the Units 3&4 
Effluent Holding Pond. Groundwater recovery is being conducted from the sub-McKay 
sandstone directly north of the Units 3&4 Effluent Holding Pond and northeast of the pond. 

1.1.3 Surface Water 

East Fork Armells Creek 
At the Plant Site and the 1&2 Area, the nearest natural surface water is East Fork Armells Creek. 
At the Units 3&4 EHP, the nearest surface water is Cow Creek. Regionally, the Creek is an 
intermittent stream, but it generally flows continuously through the town of Colstrip along the 
western edge of the Plant Site and along the eastern edge of the 1&2 Area. Surface water flow 
upstream and downstream of Colstrip is observed only in response to storm water or 
precipitation runoff events. Flow in the Creek varies throughout the year in response to runoff 
from precipitation, lawn watering, snowmelt, and plant growth. The Creek adjacent to the Plant 
Site and through the town of Colstrip is generally shallow and slow moving with abundant 
emergent aquatic vegetation present during the summer months. 
 
At the Plant Site, the topography slopes downward from the Plant Site to the west/northwest 
toward the Creek. Colstrip SES is a zero-discharge facility, so there are no direct wastewater 
discharge points from the Plant to the Creek. Shallow groundwater from most of the Plant Site 
and the 1&2 Area flows in the direction of the Creek, though as discussed previously, a series of 
capture wells limit migration of groundwater to the Creek. 
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Water quality in the creek is affected by numerous activities and natural variations.  These 
include but are not limited to: 

• Influence from Castle Rock Lake, 
• Influence from changes in runoff patterns to the creek due to industrialization or 

urbanization, 
• Influences from development of sports facilities including ball fields and golf courses, 
• Influence of runoff from the townsite that involves lawn maintenance, road maintenance, 

highway management, etc., 
• Influences from plant site capture systems and past seepage, 
• Seepage from the City of Colstrip Treated Sewage Lagoons and storage ponds, 
• Influence from upstream mining and interruption in surface water and groundwater flow 

to the creek. 
 

Cow Creek, South Fork Cow Creek, Pony Creek 
Other major drainages at the facility include Cow Creek and South Fork Cow Creek. These 
drainages are ephemeral in the headwaters. That is, there is only flow during response to 
snowmelt or precipitation runoff. Pony Creek is north of the Units 3&4 Effluent Holding Pond, 
and is also ephemeral. Water quality data are available from these drainages. However, the data 
are highly variable, and as such, are not considered useful for calculation of BSLs. 

1.2 Previous Investigations 

There have been two previous investigations of groundwater background conditions at the Plant 
Site and the 1&2 Area and one previous investigation at the Units 3&4 Effluent Holding Pond: 

• A preliminary investigation of the 1&2 Area groundwater (Maxim 2004) 
• A 2007 update of the Plant Site and 1&2 Area groundwater investigation (Arcadis 2007) 
• A preliminary investigation of Units 3&4 EHP groundwater (Exponent 2011) 

 
A preliminary statistical analysis of Plant Site and 1&2 Area groundwater data was conducted by 
Maxim Technologies in 2004 (Maxim 2004). Maxim identified a total of 59 wells in the area of 
the Plant Site and 1&2 Area that were deemed “unimpacted” by Facility operations and were 
included in the background analysis. The Maxim analyses divided wells into two groupings: 
“shallow” and “all wells.”  

The statistical analysis previously performed by Maxim (2004) included the following steps: 

1. Graphical analysis of the data distribution based on histograms, probability plots, and 
trend plots (scatter plots of concentrations against time). 

2. Calculation of summary statistics, including the standard deviation, mean, median, 
minimum, maximum, range, and the sample sizes (including detects and non-detects). 
Non-detect (ND) values were taken to be the reporting limits (no substitution method was 
used such as half the reporting limit). 

3. Calculation of BSL values based on the 95 percent upper confidence limit on the mean 
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(95 UCL) using a parametric method that assumes that data are normally distributed. The 
rationale for using the 95 UCL was attributed to USEPA's 1992 guidance, Statistical 
Analysis of Ground-Water Monitoring Data at RCRA Facilities (Addendum to Interim 
Final Guidance, July). 

4. Trend plot analysis based on linear regression performed on concentration/time profiles. 
 
Subsequent site investigations identified several areas for improvement in the identification of 
background groundwater samples for the Plant Site and SOEP/STEP areas. As a result, an effort 
was undertaken by Arcadis in 2007 to re-evaluate unimpacted wells identified by Maxim. This 
re-evaluation resulted in the removal of 18 wells and the addition of 33 others, bringing the total 
number of unimpacted wells to 74. Arcadis divided wells into three stratigraphic units (Bedrock, 
Alluvium, and Spoils). Wells that were completed in both the spoils and the bedrock were added 
to the Spoils dataset, and wells that were completed in both the alluvium and bedrock were 
added to the Alluvium dataset. The final unimpacted dataset evaluated by Arcadis included 15 
Alluvium wells, 43 Bedrock wells, and 16 Spoils wells.  

The Arcadis analyses evaluated 41 different analytes. Arcadis used the 95 percent confidence 
interval of the 95th percentile (95/95 upper tolerance limit, or UTL) to represent the BSL. 
However, sample sizes were considered sufficient for calculating 95/95 UTLs for only 16 
analytes in Bedrock wells, and 4 analytes in Alluvial wells. No 95/95 UTLs could be calculated 
for Spoils wells. When sample sizes were not sufficient to calculate 95/95 UTLs, Arcadis used 
the maximum detected concentration (after outlier analysis) in the unimpacted wells to represent 
the BSL. Additional refinements to the Maxim analysis include the following: 

1. Statistical procedures for identifying and testing outliers were added. 
2. NDs were explicitly incorporated in the statistical analysis using non-parametric 

statistical approaches designed for left censored data. ND values were taken to be the 
reporting limits. 

3. Trend analyses were conducted for the statistical evaluation of trends, including 
evaluations for seasonal cycles. 

4. Additional analytes were included in the analyses to evaluate potential site impacts. 
5. Suspect values were removed from the dataset prior to performing the statistical analysis 

(e.g., duplicate entries). 
 
Additionally, an investigation by Exponent (2011) analyzed background groundwater conditions 
at Units 3&4 EHP by looking at samples taken prior to October 1, 1983. Results were presented 
in an external memorandum for the three stratigraphic units used by Arcadis (2007) with the 
separation of coal layers into a fourth unit called Coal. 95/95 UTLs were also used to estimate 
BSL values in this investigation, resulting in values for 23 analytes each in Alluvium, Bedrock, 
and Coal wells; and 37 analytes in Spoils wells. The statistical approach was similar to Arcadis 
(2007) in that outlier tests were performed, non-parametric UTLs were calculated, and the 
maximum detected concentration was used as the BSL when sample sizes were insufficient for 
bootstrapping. 

Groundwater well data have been collected for more than seven years since the time that BSLs 
were last calculated for the Plant Site and SOEP/STEP areas and five years since preliminary 
BSLs were estimated for the Units 3&4 EHP. In addition, the conceptual model of the site 
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continues to be improved as more information becomes available. The current investigation 
includes an assessment of the wells that were used in the initial evaluation, as well as the 
updating of the BSLs developed in earlier investigations to include new data and potential data 
that was previously undiscovered.   

1.3 Summary of Current Approach 

Draft groundwater BSLs have been calculated previously for the Units 3&4 Effluent Holding 
Pond, but final BSLs have not been promulgated by MDEQ. In this study site-wide data were 
used, including data from the Units 3&4 Effluent Holding Pond. An additional component of the 
investigation was evaluation of stratigraphic layers used for BSL calculations.  

The possibility of developing BSLs for surface water was also evaluated, since earlier 
investigations did not address surface water. East Fork Armells Creek has been sampled since 
the mid-1980s, but sampling locations include only four locations that can be considered 
upstream of the Plant’s influence. This is because upstream of the town of Colstrip, East Fork 
Armells Creek experiences intermittent flow. Part of the current investigation was to explore 
additional upstream locations and calculate surface water BSLs if enough data existed. 

The broad objectives of the current investigation are as follows: 

• Confirm and update the unimpacted status of wells (relative to SES closed loop 
wastewater operations) and groundwater samples from those wells used in previous 
developments of groundwater BSLs 

• Identify additional wells that provide background data that were not previously included 
and evaluate them for inclusion in the groundwater background database 

• Determine if the list of analytes with BSLs can be expanded based on the updated 
groundwater data 

• Determine if BSLs are appropriate for site-wide use  
• Group stratigraphic units as possible, and practical, for BSLs calculation 
• Compile and evaluate surface water data for exploratory data analysis and subsequent 

consideration for BSL calculation  
• Update statistical methodologies used in previous BSL calculation 
• Present updated BSLs 

The development of updated groundwater and surface water BSLs started with the formation of a 
suitable dataset, involving additional samples gained since the previous investigations and 
additional sources of data, such as the Montana Bureau of Mines and Geology. For the 
groundwater dataset, a machine learning (ML) approach called Random Forests (RF) was 
adopted in order to use modern computational abilities to divide the dataset into two groups: 
samples not used in BSL calculations (non-baseline) and samples used in BSL calculations 
(baseline). ML is a broad area of computer science used to understand and model large, complex 
datasets. ML methods are better suited than traditional statistical methods for analyzing the 
Facility groundwater data because ML methods provide efficient means for handling large 
datasets (here, more than 600,000 groundwater samples) with many variables (over 200 different 
analytes appear as measured quantities in the samples) and with a high degree of omission (many 
samples have measurements for only three or four dozen analytes, for instance). All three of 
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these data traits (large datasets, many variables, and many missing data values) create obstacles 
of various types for traditional methods. The ML method used is called Random Forests (RF). 
The random forest method is robust to extreme values and to skewness in the data distributions. 
These qualities are important because the concentration distributions for many analytes are 
strongly right-skewed.  

The RF methodology is used here to determine sample similarities. These similarities are then 
used in a clustering algorithm to divide the data into the two groups. RF has been used in a wide 
variety of environmental applications, including predicting tree species distribution (Mellor et al. 
2013, Prasad et al. 2006, Evans & Cushman 2009), forest carbon stores (Mascaro et al. 2014), air 
temperature (Ho et al. 2014), ecological classifications (Cutler et al. 2007), and groundwater 
quality (Rodriguez-Galiano et al. 2014, Anning et al. 2012). RF has also been used in predicting 
medical diagnoses (Wolfe et al. 2010) and gene selection (Díaz-Uriarte & Alvarez de Andrés 
2006). Further details about the method are provided in Section 4 and Appendix A. Additionally, 
a simplified example of the RF clustering approach applied in this investigation is provided in 
Appendix B. 
 
The focus of the current approach is on samples, not sample locations (i.e. wells). A single 
sample can be identified by its sampling date and sample location and usually has results for 
multiple analytes. Using the sample as the unit of evaluation allows for only a part of a well’s 
historical sampling record to be used in BSL calculations. In other words, if the sampling record 
of a well shows effects of contamination in the latter half of the record, the first half of the record 
could still be used for BSL calculations. However, once a well showed evidence of impacts, no 
samples at later dates are used.  

Each sample is treated independently and is not assumed to have a relationship with past or 
future samples taken from the same well. Therefore seasonal and/or temporal trends are not 
directly assessed as they would be in a more traditional statistical analysis.  

The goal of the RF approach is to classify each sample as baseline or non-baseline in a manner 
representative of theoretical envelopes of expanding spatial and unidirectional temporal impact, 
and to rule out samples classified as elevated compared to baseline samples in the development 
of BSLs. Although RF is unlikely to identify the spatial and temporal boundary perfectly, this 
statistical approach proved to be a very useful first step at identifying background samples from 
the very large dataset that had been compiled. More traditional approaches to statistical 
clustering have difficulty with such large datasets, especially when the data are highly skewed. 
With the large amount of data available for the purpose of estimating BSLs, it is not necessary to 
identify every background sample; it is necessary only to identify sufficient background samples 
to support BSL calculations. RF efficiently combed through the data to separate baseline and no-
baseline data that are then compared to the history and conceptual model of the site. 

The baseline groundwater dataset resulting from the RF clustering approach consisted of samples 
defining groundwater conditions unimpacted by SES operations. This approach is used to 
identify two basic types of samples that represent ‘baseline’ conditions for the Facility. The first 
type included on-site and downgradient samples prior to Units 3&4 Effluent Holding Pond pond 
construction (ca. 1983) and samples prior to or outside the spatial range of impacted groundwater 
flow from process ponds. The second type are samples upgradient of the Facility that may have 
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been affected by activity other than Facility operations but nonetheless have the potential to be 
present in future Facility samples depending on groundwater flow. The first type of samples 
represent on-site background conditions while the second type represents upgradient baseline 
conditions. Baseline conditions affect on-site groundwater quality but are not under the control 
of SES operations. The RF clustering approach results in a dataset that is a combination of both 
types of samples, but that is referred to here as a baseline dataset. BSLs were based on this 
baseline dataset. Samples not included in the baseline dataset are termed ‘non-baseline’ and 
represent samples that may have site impacts.  

A brief overview of the current approach in regards to groundwater: 

1. Data preprocessing to combine data from various sources. 
2. Identification and separation of groundwater and surface water sampling locations. 
3. Determination of sample similarities using the RF machine-learning algorithm. 
4. Clustering of samples into baseline and non-baseline groups based on the RF-determined 

similarities. 
5. Expert review of clusters and refinement of baseline and non-baseline assignments. 
6. Calculation of BSLs based on unimpacted samples. 

 
The approach for surface water was different, because surface water samples are limited to a 
relatively small number of locations on East Fork Armells Creek appropriate for inclusion in the 
baseline dataset.  Specifically, locations were limited to those upstream of the Facility with 
enough samples and continuous flows. Because of the small number of potential sample 
locations, samples were assessed on a location-by-location basis, and samples from four 
locations were identified for use in baseline surface water calculations. 

2.0 Data Preprocessing 

Water quality data from both groundwater and surface water sites were provided by 
Hydrometrics, Inc. (Hydrometrics) as Excel (Microsoft) spreadsheets from several sources: 
Talen Montana LLC, Rosebud Mine (Westmoreland, formerly Western Energy), Big Sky Mine, 
Battelle, and the Montana Bureau of Mines and Geology (2015). These data were combined into 
a single dataset and stored as a data table in a PostgreSQL database (PostgreSQL 9.3 
PostgreSQL Global Development Group). To combine the data from various sources, the 
spreadsheets were read into the open-source statistical software R (R Core Team 2015) as 
comma-delimited files and processed to standardize column names and field entries (such as 
units, analyte names, stratigraphic layer, well purpose, and detect flags). Additional columns 
were added to distinguish groundwater samples from surface water samples and to incorporate 
well metadata, such as status, found in other files. In total, this resulted in a dataset of 641,793 
samples from 2,206 wells for 285 analytes over a timeframe spanning from August 8, 1972 to 
June 30, 2015.  

2.1 Development of a Groundwater Dataset 

To develop a groundwater dataset, surface water locations are removed. Next, to ensure data are 
representative of the environment in which the Facility is located, a spatial constraint is applied 
to omit data west of the Rosebud Mine, south of the Big Sky Mine, north of Pony Creek, and east 
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of the confluence of Cow Creek with South Fork Cow Creek. Samples from process sites, dam 
sumps, interception trenches, test holes, boring holes, and pits are removed. Also removed are 
dry wells, wells with evidence of process water impacts, wells at poor locations (directly down 
gradient of dam collection sumps, for example), wells with no logs or questionable completion 
information, and/or wells with histories that made their water quality record suspect. One such 
example is well PSW-1, which was perforated from the bottom up during the original 
installation. Remaining wells were reviewed with Hydrometrics on a well-by-well basis, along 
with bore logs and/or construction information, to confirm their stratigraphic layer and suitability 
for inclusion in further analysis. A majority of wells reviewed at this point are monitoring or 
capture wells. Wells without construction information, without well logs, or with information 
that suggested they were completed over more than one layer are filtered out. Wells from eleven 
different stratigraphic layers remained: Alluvium, Colluvium, Shallow, Spoils, Clinker, Rosebud 
Overburden, Rosebud Coal, Interburden, McKay Coal, SubMcKay, and SubMcKay Deep.  

For groundwater data, these steps resulted in a dataset with 145 unique analytes. However not all 
analytes had enough data to be carried further, and so this dataset is further reduced to 47 
analytes based on data availability, including all analytes from the most recent previous 
investigation (Arcadis 2007) except field conductivity plus seven additional analytes. The RF 
and clustering methods are applied to these analytes. Analytes not carried forward are 
summarized by data availability in Appendix I. For groundwater data, these steps ultimately 
resulted in a dataset with 356,297 samples from 1,333 wells, with sampling dates from March 
23, 1973 to June 30, 2015. Nearly all groundwater metals samples are filtered. Data availability 
by analyte and stratigraphic layer can be found in Table 1. 

2.2 Development of a Surface Water Dataset 

The first step in the creation of a surface water dataset for BSLs estimation is to rule out samples 
from sampling locations previously identified as groundwater locations. There were additional 
types of sampling locations also ruled out as a second step, such as springs and mine or city 
outfalls. This was further narrowed down to only sampling locations on East Fork Armells 
Creek, which is the surface water source that flows through the Site, and of those locations, only 
sampling locations upstream of the Plant Site were kept. Additional remaining locations were 
ruled out if they were ephemeral, run-off, out falls, springs, seeps, or ponded water and based on 
discussion with MDEQ personnel. The final surface water dataset contained four locations, 1,684 
samples, 39 of the 47 analytes considered in the groundwater dataset (no antimony, nitrite, 
nitrate, phosphate, titanium, silica, silver or tin), and a temporal span of February 14, 1981 to 
October 16, 2014. A majority of surface water metals are unfiltered, and most essential nutrient 
samples are filtered. Data availability by analyte can be found in Table 2. 

3.0 Exploratory Data Analysis 

Because the goal of the analysis is the development of site-wide BSLs, the data are not split into 
site sub-area specific datasets. However, the groundwater data are split into separate datasets 
based on stratigraphic layers. Initially, eleven layers are considered (Alluvium, Colluvium, 
Shallow, Spoils, Clinker, Rosebud Overburden, Rosebud Coal, Interburden, McKay Coal, 
SubMcKay, and SubMcKay Deep). Examination of boxplots (Figures 6-11) for six indicator 
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analytes (specific conductance (SC), sulfate, dissolved boron, chloride, and the ratio of calcium 
to magnesium) suggested that further groupings for these layers is possible: 

• Alluvium, Colluvium, and Shallow are combined into one stratigraphic unit, called 
Alluvium. Wells previously excluded because they bridged the Alluvium/Colluvium 
layer are included in this subunit of data as well. 

• SubMcKay and SubMcKay Deep are combined and called SubMcKay. 

Only adjacent stratigraphic layers are considered for combination. For example, SubMcKay is 
not considered for combination with Alluvium. The decisions to combine layers are based on a 
visual inspection of boxplots (Appendix C). This results in eight stratigraphic units, each of 
which is subjected to the RF clustering process. Boxplots, histograms, and Q-Q plots1 for each of 
the resulting eight combined stratigraphic units can be found in Appendix D. In all plots non-
detects are plotted at their reported detection limits using a hollow circle while detected values 
are plotted using a filled circle. This differentiates non-detects from detects, while maintaining 
the actual reported values for visualization of the data. The number of dimensions to the dataset 
and the large number of data points for many analytes make traditional statistical significance 
comparisons ineffective (traditional statistical tests with large number of data points tend to 
identify too many statistically significant results). Consequently, trend tests and other types of 
statistical comparison tests have not been performed. In light of the goal of the analysis, to 
identify samples that represent background conditions, the random forests approach is more 
adept at handling large and multi-dimensional data. 

Because the groundwater dataset spans over 40 years, detection limit values are also plotted over 
time in order to examine the potential for changes in analytic techniques over time to affect 
analyses (Appendix D). No obvious patterns in detection limits over time are apparent. 

Surface water concentrations over time are plotted by analyte and sampling location for each of 
the four selected locations (AR-12, SW-55, SW-60, and SW-75; Appendix E). Time series plots, 
Q-Q plots, and histograms are presented by analyte (Appendix E). Conceptually, all samples 
from these locations represent upstream baseline conditions unimpacted by SES operations. 
Some trends in concentrations are suggested in the time plots, however, there is sufficient 
variability in the concentrations that the trends might be an indicator of seasonal and annual 
effects on stream water flow. That is, high flow might be associated with lower concentrations. 
Consequently, the following highlights should be considered with some caution. 

• AR-12 and SW-55 exhibit some change in concentration over time. 
                                                
1 Boxplots are a method of representing the distribution of a dataset. The top and bottom of the box in the boxplot 
represent the Inter-Quartile Range (IQR), identified by the 75th, and 25th percentiles of the data, respectively. The 
horizontal line in the middle of the box represents the 50th percentile (the median). Vertical lines (called whiskers) 
extend to last data point which is no more than 1.5*IQR from the box. Data points beyond the whiskers are 
represented by circles. A Q-Q plot is a way to check how normal a dataset is. It involves graphing the quantiles of a 
data set against the quantiles of the standard normal probability distribution. If the data are normally distributed, 
then the plotted pairs will follow a straight line. Histograms plot the frequency of observations within consecutive, 
equally sized intervals of concentrations. They provide a discrete estimate of the shape of the distribution of a 
dataset. 
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o concentrations of calcium, chloride, magnesium, manganese, potassium, sodium, 
and sulfate potentially decrease over time for AR-12 

o concentrations of these same analytes appear to increase over time for SW-55 
• Most of the samples at SW-60 and SW-75 are collected over shorter time periods and 

exhibit considerable variability. 

Overall these plots suggest that it is reasonable to use all of the samples available at all four 
locations for developing BSLs. A tabular summary of this baseline dataset is provided in 
Appendix H and a map of its spatial extent is provided in Figure 25. 

4.0 Identification of Baseline Groundwater Data 
For each of the eight stratigraphic groundwater datasets, three basic steps are involved in 
establishing the baseline groundwater dataset for that unit. The first two steps are statistical – 
first to apply the RF algorithm (Breiman 2001, Liaw & Wiener 2002), and second to use the RF 
output to cluster samples into two groups, differentiating background concentrations from 
elevated concentrations. The third step involves a sample-by-sample review of the clusters to 
ensure that BSLs represent baseline conditions (on-site and upgradient) rather than only 
background conditions. 

RF is used to calculate a similarity measure for samples based on concentrations, or values, for 
their multivariate suite of analytes (see Appendix A for details). The RF analysis uses 39 
analytes instead of the 47 mentioned above. Field-measured specific conductance is considered 
too highly correlated with lab-measured specific conductance for separate inclusion. RF is run on 
39 analytes to identify background samples. Once those samples are identified, BSLs are 
calculated for all 47 analytes. Qualities of the RF process that make it especially appropriate for 
this purpose are its insensitivity to extremes in the dataset and its ability to compare variables 
with different ranges and units (scale invariance). In addition, RF does not require data to be 
normalized or to fit a particular statistical distribution, or to be transformed in any way. 

Because some analytes are measured much less frequently than others, RF starts by filling in 
missing values using a process called RF imputation. This RF imputation process is slightly 
different from the RF process used to generate the clustering input (similarity values), but uses 
the same core RF algorithm. RF imputation uses information from other samples to fill in 
realistic values for missing data. A more detailed description of RF imputation is found in 
section 4.1 and Appendix A. The performance of this method is tested by leaving out non-
missing data, imputing values for the omitted data, and then comparing the imputed and known 
values. Based on this evaluation, analytes with less than 500 non-missing values are not used in 
the initial clustering assignments of samples to impacted and unimpacted groups. Table 3 shows 
the analytes dropped from each stratigraphic unit for this step. Imputed values are used only to 
evaluate the similarity of samples for clustering purposes. They are not used to calculate BSLs. 

After RF imputation, another RF process is used to generate a sample similarity matrix 
(technically, a “proximity” matrix; for details see Appendix A) for each stratigraphic unit. RF 
also produces estimates in the relative importance of variables, in terms of how much each 
variable contributes to the overall structure of the data. Relative importance plots are presented 
in Appendix F, although they do not directly impact clustering results. Factors other than analytic 
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concentrations can be included in RF, and time and spatial coordinates were included as 
additional input variables in preliminary RF dissimilarity runs. However, time (date of sampling) 
and spatial coordinates were not important predictors of similarity and are subsequently left out 
of the final RF analysis. This is not necessarily advantageous or disadvantageous, but instead 
indicates that the concentration differences alone inherently capture the spatial and temporal 
distinctions.  

The degree of similarity produced by the RF is captured as similarity values for each pair of 
samples. The similarity values are presented in a matrix. The similarity values are then used to 
find groups (clusters) of samples that include similar data using an approach called “partitioning 
around medoids” (PAM). The PAM clustering algorithm clusters samples that have high 
similarity values, while separating those with low similarity into different clusters. The PAM 
method clusters by finding a group of samples that are near a medoid, which is a point in the 
cluster whose average dissimilarity to all objects in the cluster is minimal. So, in effect, 
background samples will appear similar, and non-background samples will appear similar, but 
background samples will not appear similar to non-background samples. 

PAM results for two, three, and four clusters are created and plotted for the six most important 
analytes as determined by RF variable importance scores (Appendix F). After visual inspection, 
the clustering results for only two medoids are used. Additional clusters provide no better 
delineation between clustering groups (i.e., background and non-background).  

The PAM clustering process captured the bulk of the classification of background and non-
background samples. However, experienced hydrogeologists familiar with the history and 
geology of the Facility and its surrounds reviewed the statistically-defined clusters to evaluate if 
some samples should be moved from non-background to background and vice versa. In part this 
step involved consideration of upgradient baseline conditions as opposed to background 
conditions. That is, some samples identified as non-background are upgradient of the Facility 
and can be classified as background because they are considered a baseline condition for the 
Facility. Classifying these statistically would be very difficult, but classifying them based on 
known site conditions, site history, groundwater flow, and knowledge of local and site 
hydrogeology was considered reasonable. This expert review was also used to evaluate wells and 
individual groundwater samples that could have been misclassified statistically. That is, for some 
samples the classification is clear, but for others the classification is more uncertain (and 
additional clusters did not help define this). The RF process averages thousands of iterations 
(Appendix A), and will not necessarily result in grouping borderline samples in the same clusters 
over subsequent runs due to the random nature of RF. In addition, there is always uncertainty in 
the data, which could lead to misclassification of some samples. The expert review adds another 
level of conformity to clustering results. Furthermore, not every background sample needs to be 
identified, only a sufficient number to support BSL calculations.  

The result of the RF imputation, RF dissimilarity (similarity – see Appendix A), PAM clustering, 
and expert review processes is a collection of baseline samples (on-site background plus baseline 
upgradient) that are used for BSL determinations. The spatial distribution of wells that do or do 
not fall into this baseline dataset, along with wells that have samples both in an out of it, can be 
seen in Figure 18. A more detailed description of the steps taken to identify the baseline dataset 
is provided below (sections 4.1 through 4.4) and in Appendix A.  
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4.1 Random Forests Imputation 

As noted above the first step in the RF cluster analysis is to fill in or “impute” missing data. The 
imputed values are not used in computing BSLs, but are necessary for maximizing the amount of 
data available for the RF dissimilarity analysis (see Section 4.2). Although imputed values add 
no new information (they are calculated entirely from non-missing data), they benefit the 
analysis by allowing all of the non-missing data to inform RF dissimilarity.  

RF is a machine-learning algorithm that makes use of modern computing power to iteratively 
identify relationships among observations of multivariate data. It can be used to classify samples 
from unknown groups based on patterns in samples with known groups (i.e. supervised RF), and 
it can also be used to partition samples into groups when no true group assignments are known 
(i.e. unsupervised RF). RF imputation is a supervised type of RF used to replace missing values 
based on the relationship between known values, effectively imputing much like parametric 
regression methods, but often with better results than parametric or mixed-type methods (Shah et 
al. 2014, Stekhoven & Buehlmann 2012). 

For each of the eight stratigraphic units of input data, a separate imputation was performed using 
an iterative RF imputation process in which missing values are estimated and re-estimated until 
the sequence of estimates converges. Prior to the first iteration, missing values for all analytes 
are initially filled in with the mean of the non-missing values for each analyte, but the algorithm 
keeps track of where the missing values were originally located. For every iteration thereafter, 
RF targets analytes one at a time to improve the estimate of imputed values. For each analyte, the 
algorithm selects only those samples that did not originally have a missing value for that analyte. 
From this set of samples, an RF model is generated, which aims to predict the target analyte 
based on its relationships to all other analytes in the dataset. Once constructed, this model is used 
to fill in the missing values of the target analyte again. The new value tends to be more accurate 
on each successive iteration of the imputation algorithm. A cycle of updating each analyte once 
represents a single iteration, and iterations continue until results converge.  

In general, RF results are the aggregate of numerous decision trees, which are constructed by 
repeatedly splitting the data into smaller and smaller groups, or “nodes.” For each split, samples 
are separated into one node or the other in such a way as to minimize the variance, or spread, 
among samples in the newly created nodes. Each resulting node is then split using this same 
criterion and so on until a node is either homogeneous (no variance) or contains five or fewer 
samples (the default minimum sample size criteria), at which point splitting stops along that 
branch. Because the algorithm aims to minimize within-node variance, nodes tend to become 
more homogeneous the further down the branches of the tree they are located. The samples that 
comprise the end nodes where the splitting has stopped are termed “leaves.”  

More specifically, each node in a decision tree has an associated decision rule defining how to 
divide the samples in the node into two new groups. The decision may be based on any predictor 
variable in the model. In the RF imputation algorithm, available predictors at any step of the 
analysis are all analytes except for the target analyte. The predictor variable to split on, and the 
particular value of that variable to split at, are chosen to minimize the variance in the resulting 
nodes. For example, if calcium was the target analyte, a splitting rule at some node might end up 
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being that samples with magnesium values less than 100 mg/L go in one new node, and those 
with values of magnesium greater than or equal to 100 mg/L are assigned to the other.  

Once all splitting rules have been defined, the RF can be used to predict response values for 
samples that were missing values for the target analyte. This is done by running these samples 
through each tree by following its decision rules, until each sample is assigned to a leaf. The 
mean response of the other samples in that leaf is then assigned as the new imputed value. The 
RF consists of many decision trees, and each is used to impute new values, and then the results 
are averaged to get a final value for each sample in that iteration.  

Each iteration cycles through every analyte with missing values in this manner. After all analytes 
have had new imputed values assigned to them, the current iteration is then compared to the 
previous iteration, and the difference between their imputed values is measured. Another 
iteration is started if this difference is less than the difference measured from the previous 
iteration’s comparison to its predecessor. If the difference is larger, the RF process is stopped 
and the current iteration becomes the output from the RF process. This output is used as the input 
in the next process, the generation of an RF dissimilarity matrix.  

The imputation process was implemented using the missForest package in R (Stekhoven & 
Buehlmann 2012, Stekhoven 2013). 

4.2 Random Forests Dissimilarity 

When used to generate a similarity matrix instead of a regression model to predict values for 
imputation, RF compares the input data to a scrambled (random/synthetic) version of those data. 
This is necessary when no training dataset is available (i.e. unsupervised RF). Scrambling the 
data removes any relationship or correlation between concentration values within a sample. For 
example, it may be common in the original dataset for samples with high concentrations of 
arsenic to also have high concentrations of uranium; this correlation would not exist in the 
scrambled dataset. The algorithm now has two versions of the input data, one with the 
relationships between measured variables intact (the original data) and one without these 
relationships (the random/synthetic data). The original and synthetic data are combined, with 
each sample labeled according to whether it is an original or synthetic sample. After combining 
these two datasets, the RF algorithm builds trees that separate them back out. In doing so, the RF 
algorithm effectively learns about the relationships in the original data simply by contrasting it to 
the synthetic data. It should be emphasized that, like the imputed values descried above, the 
synthetic data used in unsupervised RF learning allow the algorithm to proceed technically, but 
they are not retained or analyzed further after the algorithm is complete. It is not uncommon for 
machine-learning algorithms to form fictitious data to help find relationships among the real 
data. 

The RF unsupervised learning algorithm aggregates results from a large group of decision trees. 
The trees are similar to the regression trees described above (section 4.1), but in this case aim to 
distinguish among classes (real vs. synthetic) rather than predict values of an analyte. In 
classification problems, there is no variance to minimize, but RF uses the analogous criterion of 
attempting to maximize the homogeneity within each group produced by a split at a node. That 



Final BSLs Report 

22 January 2016 24 

is, each split in the RF unsupervised learning algorithm attempts to put mostly real observations 
in one group and mostly synthetic observations in the other group.  

In RF unsupervised learning, the critical output of each decision tree is the similarity matrix, 
which is defined based on a simple rule: two samples are similar if they are classified in the same 
leaf of the tree, and different if they fall in different leaves. Each tree creates a similarity matrix 
crossing all samples with each other, and fills in a value of 1 for every pair that are similar, and a 
0 for all dissimilar pairs. After all trees have been constructed, their similarity matrices are 
averaged together to get a composite similarity score between each pair of samples. Note that 
proximities are only calculated for the real samples, not the synthetic portion of the data used to 
help construct the RF.  

For the baseline dataset fifty forests are included in this simulation, each with 1,000 trees. This 
results in a total of 50,000 trees. A reason not to simply run 50,000 trees in one forest is that each 
time a new forest is created, the input data is scrambled anew, lessening the chance that any one 
version of the scrambled data will impact the overall results.  

The RF approach is unique in that it imposes no restrictions on the structure, distribution, or 
covariance of the data to be clustered, or the scale differences between variables or observations 
and, hence, offers a powerful and flexible means for identifying natural groupings in complex 
datasets. 

The approach was implemented using the randomForest package in R (Liaw & Wiener 2002, 
Liaw et al. 2015). 

4.3 PAM Clustering 

The similarity matrix produced by the RF process is used as input to the PAM clustering 
algorithm. Based on the similarity values stored in the matrix, samples are clustered into ‘like’ 
groups. The number of groups, for this purpose, is pre-specified as two (one for background and 
the other for non-background samples). The PAM attempts to locate “medoids”—central values 
for a group of multivariate data points—around which to define the background and non-
background clusters. For any such pair of medoids, samples are defined as “background” if they 
are closer to the background medoid than to the non-background medoid, and vice versa. The 
PAM algorithm works by searching for the pair that maximizes the overall similarity between 
sample points and the medoid of their assigned cluster. This process effectively separates the 
samples into the most distinct clusters possible. The approach was used to cluster samples into 
two groups for each of the eight stratigraphic units. A more in-depth description can be found in 
Appendix A. 

4.4 Cluster Review  

The expert review of the clustering results was performed on a well-by-well and sample-by-
sample basis. Because some samples border on one cluster or the other, a review of sample 
classification was performed by subject matter experts with expertise in the Facility, its history, 
use and geology. This was also a method to verify the initial PAM clustering results.  
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Several actions were possible based on this review: 

1) An entire well could be moved from background to non-background if it was onsite 
and in a known impacted area based on site history and events. 

2) Samples from a well could be moved from baseline to non-baseline based on specific 
dates related to the history of the site and the spatial location of the well. 

3) An entire well could be moved from non-baseline to baseline if it was known to be in 
an unimpacted area off-site (such as reclaimed areas northeast of the site) or 
upgradient of the site with potential impacts to the groundwater quality of the site 
from other sources. 

4) Samples from a well could be moved from non-baseline to baseline based on review 
of the data, typically wells with samples that bounce around from cluster to cluster 
throughout the time period of record. 
 

In total, this review process results in only 2.7% of 24,584 samples being switched from their 
PAM-assigned group. The result is a groundwater baseline dataset representing baseline 
conditions for the Facility.  

4.5 Baseline Groundwater Dataset Finalization 

Because one of the objectives of the current investigation is to calculate BSLs for a practical 
number of stratigraphic units, another review of the data across stratigraphic layers is done. Only 
the baseline data are used in this review in order to identify which units share similar baseline 
conditions and could therefore be combined for calculations of BSLs. A visual comparison of 
stratigraphic units (Figures 12-17) was performed, resulting in the four coal-related units 
(Rosebud Overburden, Rosebud Coal, Interburden, and McKay Coal) being combined into a 
single unit termed “Coal-Related.” Other units were left separate, resulting in five final units: 
Alluvium, Spoils, Clinker, Coal-Related, and SubMcKay. Figure 19 shows the spatial 
distribution of baseline wells across these final groundwater units, as well as the four baseline 
surface water sites. The Clinker baseline dataset is spatially limited in comparison to the other 
units (Figure 21). This is because the Clinker is so well drained that it does not contain much 
water. Overall the Clinker stratigraphic layer represents a smaller portion of the groundwater 
dataset. The spatial extent of the Alluvium, Spoils, Coal-Related, and SubMcKay baseline 
datasets is shown if Figures 20, 22, 23, and 24 respectively. Note that the sub-McKay may 
contain water in different positions in the depositional sequence. Sub-McKay wells are typically 
completed in the first water bearing interval below the McKay Coal. Where the first groundwater 
below the McKay Coal is encountered may vary over short lateral distances.   

A comparison of this dataset to previous BSL datasets (Exponent 2011, Arcadis 2007, Maxim 
2004) is provided in Table 6. The statistical summary of the current investigation dataset is 
provided in Table 5 and is comparable to Tables 2-5 in the previous Exponent investigation 
(2001), Table 5 in the previous Arcadis investigation (2007), and Table 3 in the previous Maxim 
investigation (2004).  

Tables in Appendix H summarize the data in this final dataset as well as the data not used for 
BSL determination.  
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5.0 Baseline Screening Levels 

In the current investigation, BSLs are represented statistically as the 95th upper confidence bound 
on the 90th percentile of concentrations for an analyte as observed in the baseline dataset. This is 
often referred to as a 95/90 upper tolerance limit (UTL). The methodology to do so combined 
bootstrapping with Gehan ranking and was implemented in R. Note that previous BSLs were 
calculated based on a 95/95 UTL (Arcadis 2007). 

Bootstrapping (Efron 1993) works by drawing sets of values with replacement from observed 
samples many times, creating a simulation from the empirical data. Each realization of the 
sampling procedure provides an estimate of the 90th percentile. Each estimate is different, which 
creates a distribution for the 90th percentile. The 95th percentile of this distribution is interpreted 
as the 95th upper confidence bound of the 90th percentile.  

Gehan ranking is a method used to account for censored data, such as detection limits. It is 
commonly used when performing nonparametric significance tests, such as the Wilcoxon rank 
sum test (Gehan 1965, Gilbert 1987, Helsel 2005, Martinez & Naranjo 2010, USEPA 2013), but 
its applications are much broader (e.g.. trend detection in water quality data, regression analysis, 
survival analysis). Gehan ranking treats non-detects as potentially representing any value less 
than the reported detection limit. The true value is unknown, but it has a maximum limit. All 
values (detects and non-detects) are ordered (i.e. ranked) lowest to highest based on their 
reported values and detection status. For each value, a new rank is determined by averaging all 
possible ranks the value could have. For example, a non-detect value may be originally ranked 
higher than a detect value, but the true value could be less, so this results in multiple possible 
ranks that are then averaged.  

As an example of this approach, suppose there are four sample results with values [10, 20, 30, 
40], and suppose the first and third sample results are non-detects [<10, 20, <30, 40]. Gehan 
ranking assigns the following ranks [1.5, 2.5, 2, 4]. That is, the first sample (<10) might be the 
lowest value sample, or the second lowest value (because of the non-detect at <30). The second 
sample (20) could occupy the 2nd or 3rd ranking position, hence its average rank is 2.5. The third 
sample (< 30) could occupy one of the first three ranking positions, hence its average rank is 2. 
Percentiles can then be computed based on the Gehan ranks of the data values. 

To estimate a 95/90 UTL, the dataset is resampled with replacement, the samples are reordered 
according to the Gehan ranking scheme, and the 90th percentile is calculated. Each bootstrap 
realization provides a different estimate of the 90th percentile, which creates a distribution of the 
90th percentile. The 95th percentile of this simulated distribution of 90th percentiles is the 95/90 
UTL, which is used as the BSL. A more detailed example is shown in Appendix G. 

The estimation of 95/90 UTLs using parametric methods depends heavily on the underlying 
distributional assumptions, and deviations from those assumptions can lead to poor 95/90 UTL 
estimates. This combined non-parametric approach makes no distributional assumptions and 
addresses non-detects with multiple detection limits easily. However, because of the relative 
novelty of applying Gehan ranking to UTLs, an additional, more common method of addressing 
non-detects was also applied for comparison purposes. This comparison is presented in Tables 8 
and 10 alongside the Gehan-ranking based UTL estimates from this investigation. The alternate 
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methods were a 95/90 UTL estimation using the reported detection limits (DL; reported non-
detect values were not changed) and an estimation using half the reported detection limit (1/2 
DL). 

Tables 8 and 10 also show Circular DEQ-7 Human Health Standards for comparison. 

5.1 Calculation of BSLs 

For each analyte in each of the five stratigraphic units and in surface water, 90th percentiles and 
BSLs (95/90 UTLs) are computed, unless there are insufficient data to support BSL estimation. 
In cases in which where there were less than 10 samples, no BSL was calculated. It is common in 
environmental statistics to require sufficient useful data to perform reliable statistical analysis. In 
principle a mean and standard deviation can be estimated from two data points, but the 
estimation is not likely to be statistically reliable in the sense that a different two data points 
could provide very different estimates. Some consideration for the calculation of BSLs was given 
to the number of data points that might be needed. A decision was made that BSLs should not be 
presented if there are less than 10 data points in representing an analyte and/or stratigraphic unit. 
Table 4 summarizes the analytes across the stratigraphic units that have enough data points. 

A large proportion of non-detects in a dataset can also make statistical analysis unreliable. For 
estimation of the 90th percentile, constraining the frequency of non-detects in the upper part of 
the data distribution is reasonable. Instead of applying additional rules that limit the number of 
BSL calculations performed, the decision was made to calculate BSLs for all remaining analyte 
and stratigraphic unit combinations (of size at least 10) and then flag certain 95/90 UTLs values 
according to the impact of the non-detects on the estimation. 

For many of the datasets the non-detects are in the lower part of the data distribution and, hence, 
have no impact on estimation of the 95/90 UTL. In some cases, there are many non-detects, 
some of which appear in the upper part of the distribution, or even include the maximum 
reported value. This leads to three categories of calculated BSL values: 

1. BSLs that are not impacted by non-detects. These BSLs are not flagged, and are 
considered the most reliable BSL estimates;  

2. BSLs that are impacted by large valued non-detects; identified when the BSL is less than 
the 90th percentile of the reported values (i.e., when not adjusting for NDs). These BSLs 
are flagged as less reliable estimates; and,  

3. BSLs that are the maximum reported value and this value is a non-detect. These BSLs are 
flagged as less reliable estimates.  

These categories are identified in the BSLs comparison table (Tables 8 and 10) and in Tables 5 
and 9. No shading applies to Category 1. Blue shading applies to Category 2. Orange shading 
applies to Category 3.  

Note that Tables 5, 8, and 9 also flag estimated 90th percentiles (in yellow) that might be less 
reliable. The associated BSLs are also flagged. In these cases the top 20% of reported values are 
not all detects. This means some non-detects impact the BSL estimation. In some cases all of the 
data for a specific analyte and/or stratigraphic unit may have been non-detects.  
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5.2 Results 

Table 1 lists the analytes and stratigraphic units for which there are sufficient data to estimate 
groundwater BSL calculations. A summary of the BSLs and the data used for their estimation is 
presented in Tables 5 and 7 for groundwater and Table 9 for surface water. Respective 
comparisons of BSL results from different statistical methods are presented in Tables 8 and 10 
for groundwater and surface water. The two alternative methods differ only in how non-detects 
are handled. For these methods a 95/90 UTL is calculated using bootstrapping, but Gehan 
ranking is not applied. One uses the reported detection limit (DL) and the other uses half the 
reported detection limit (1/2 DL). These same tables also present MDEQ Circular DEQ-7 
standards for human health (MDEQ 2012) for comparison. 

The recommended groundwater BSLs are presented in Table 7. Empty cells indicate that no BSL 
was calculated because there was not enough available data. There are options for considering a 
different statistic to represent the upper end of baseline conditions when the BSL is not 
calculated or is unreliable. These options include the estimated 90th percentile and the maximum 
detected concentration reported in the baseline dataset. Note that the 90th percentile estimate is 
based on the raw data with no further manipulation of non-detects, and is sometimes greater than 
the maximum reported detected value because the greatest reported values are non-detects. 

Highlighting is used to separate those combinations that clearly support groundwater BSL 
calculations from those for which the non-detects have an impact and thus result in less reliable 
estimations. If there is no shading in the cell, then the estimate is considered reliable (Category 1 
in Section 5.1). The orange and blue highlighted results are considered less reliable. The 
estimated BSLs in these cases are impacted by non-detects. In effect the BSL might represent a 
detection limit, rather than concentration data. 

For highlighted BSL results, this indicates one of two unique cases for which the given BSL 
value requires careful consideration. In the blue shaded cases (Category 2 in the Section 5.1) the 
estimated BSLs are less than the 90th percentile (when the data are evaluated without adjustment 
for non-detects). An example of this is lead within SubMcKay (Table 5). There is a large number 
of relatively large-valued non-detects within the dataset, and the maximum non-detect is nearly 
as great as the maximum detect value. Large-valued non-detects can affect estimation of the 90th 
percentile, but the conditions of the effect depend on where the non-detects are in the original 
ordering of the data.  

In the orange shaded cases (Category 3 in Section 5.1), the BSLs correspond to the largest 
reported value and that value is also a non-detect. This generally occurs when the maximum 
value is a non-detect and the detect frequency is low. However, this condition is hard to predict 
because it also depends on the general occurrence of non-detect values within the detected 
values. An example is titanium within the Alluvium unit. Table 5 shows the largest value is 0.1 
and it is a non-detect. Even with Gehan ranking, this value gets chosen enough times in the 
bootstrapping simulations as the 90th percentile that it becomes the BSL. The large number of 
non-detects relative to detects in this titanium dataset makes interpretation of the BSL and the 
90th percentile difficult.  
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Yellow shading is used for the 90th percentile estimates in Tables 5, 8, 9, and 10 when there are 
any non-detects in the top 20% of the reported values. In general, colored shading implies 
estimates that are affected by non-detects. If the effect is at the 90th percentile then that effect 
also carries into the BSL, which may have orange or blue shading indicating a more specific 
non-detect effect. In cases where the 90th percentile is shaded yellow, but no additional shading 
is present in the BSL column, careful interpretation of the BSL value is still recommended. For 
example, nickel in Alluvium (Table 5) has a 90th percentile shaded in yellow, but no shading for 
the BSL value. This still indicates that the BSL might be representative of detection limits rather 
than actual concentrations. In fact, this nickel dataset has a detect frequency of only 13.2 percent. 
Most of these data represent detection limits. One possible interpretation is that baseline 
conditions are unknown and the BSL shown should not be applied. 

However, because the BSLs will be applied only if they exceed human health standards (see 
Tables 8 and 10 for these), shaded BSLs are only of concern where they exceed these standards. 
In the case of the nickel example above the calculated BSL value is the same as the human health 
standard of 0.1 mg/L. So while the shown BSL for alluvial nickel should be interpreted carefully, 
it has little bearing on applied screening levels. There are some groundwater BSLs that exceed 
the human health standards and should also be interpreted carefully due to potential effects by 
non-detect values included in the BSL estimation. These are: 

• Tin in Alluvium, 
• Beryllium in Spoils and Coal, 
• Lead in Spoils, 
• Mercury in Spoils, 
• Nitrite in Coal, 
• Thallium in Coal and SubMcKay 

The alluvial tin BSL is the maximum non-detected value, as is the BSL for beryllium and nitrite 
in Coal and mercury in Spoils. Beryllium concentrations in Spoils are all non-detects except one. 
Thallium has no detects in either Coal or SubMcKay. The amount of data in these cases that are 
non-detects suggests the BSL is primarily calculated based on detection limits and not measured 
concentrations. The BSL for lead in Spoils is based on a 30% detection frequency, the highest by 
far of any of the analytes listed above. However, the fact that the BSL (detect status is a 
consideration) is less than the 90th percentile (detect status is not a consideration) suggests it too 
is influenced by non-detects and should be interpreted with caution. 

In surface water, only mercury exceeds the human health standard and has a BSL that may be 
affected by non-detect values. In this case, the BSL is a non-detect value and the real baseline 
concentration is lower.
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